Combinatorial Sequences Arising from a Rational Integral

نویسنده

  • VICTOR H. MOLL
چکیده

We present analytical properties of a sequence of integers related to the evaluation of a rational integral. We also discuss an algorithm for the evaluation of the 2-adic valuation of these integers that has a combinatorial interpretation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The 2-adic valuation of a sequence arising from a rational integral

We analyze properties of the 2-adic valuation of an integer sequence that originates from an explicit evaluation of a quartic integral. We also give a combinatorial interpretation of the valuations of this sequence.

متن کامل

Mathematical Constants and Sequences

Basic math constants Derived from the basic ones ... from 0 and 1 ... from i ... from 1 and i ... from π ... from e ... from e and π ... from γ ... from Φ Named real math constants Other notable real constants Notable integer numbers Named/notable functions on N Named/notable integer sequences Related to Factorials Related to Hamming weight Related to Powers Related to Divisors Related to Aliqu...

متن کامل

1 4 A pr 2 00 4 A computation of Kontsevich Integral of torus knots ∗

We study the rational Kontsevich integral of torus knots. We construct explicitely a series of diagrams made of circles joined together in a tree-like fashion and colored by some special rational functions. We show that this series codes exactly the unwheeled rational Kontsevich integral of torus knots, and that it behaves very simply under branched coverings. Our proof is combinatorial. It use...

متن کامل

A computation of the Kontsevich integral of torus knots

We study the rational Kontsevich integral of torus knots. We construct explicitely a series of diagrams made of circles joined together in a tree-like fashion and colored by some special rational functions. We show that this series codes exactly the unwheeled rational Kontsevich integral of torus knots, and that it behaves very simply under branched coverings. Our proof is combinatorial. It use...

متن کامل

Higher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$

Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005